市值: $2.6208T 0.16%
體積(24小時): $132.1262B -30.02%
  • 市值: $2.6208T 0.16%
  • 體積(24小時): $132.1262B -30.02%
  • 恐懼與貪婪指數:
  • 市值: $2.6208T 0.16%
加密
主題
加密植物
資訊
加密術
影片
頭號新聞
加密
主題
加密植物
資訊
加密術
影片
bitcoin
bitcoin

$87959.907984 USD

1.34%

ethereum
ethereum

$2920.497338 USD

3.04%

tether
tether

$0.999775 USD

0.00%

xrp
xrp

$2.237324 USD

8.12%

bnb
bnb

$860.243768 USD

0.90%

solana
solana

$138.089498 USD

5.43%

usd-coin
usd-coin

$0.999807 USD

0.01%

tron
tron

$0.272801 USD

-1.53%

dogecoin
dogecoin

$0.150904 USD

2.96%

cardano
cardano

$0.421635 USD

1.97%

hyperliquid
hyperliquid

$32.152445 USD

2.23%

bitcoin-cash
bitcoin-cash

$533.301069 USD

-1.94%

chainlink
chainlink

$12.953417 USD

2.68%

unus-sed-leo
unus-sed-leo

$9.535951 USD

0.73%

zcash
zcash

$521.483386 USD

-2.87%

加密貨幣新聞文章

馬爾可夫思維遇見百萬代幣奇蹟:人工智能推理革命

2025/10/22 03:11

探索馬爾可夫思維和百萬令牌上下文窗口如何徹底改變人工智能推理,使先進的人工智能功能更加高效和易於使用。

馬爾可夫思維遇見百萬代幣奇蹟:人工智能推理革命

Markovian Thinking Meets Million-Token Marvels: The AI Reasoning Revolution

馬爾可夫思維遇見百萬代幣奇蹟:人工智能推理革命

The AI landscape is rapidly evolving, with advancements like Markovian Thinking and the advent of million-token context windows reshaping what's possible.

人工智能領域正在迅速發展,馬爾可夫思維等進步以及百萬代幣上下文窗口的出現重塑了可能性。

The Rise of Markovian Thinking

馬爾可夫思維的興起

Researchers at Mila have introduced Markovian Thinking, a novel technique designed to drastically improve the efficiency of large language models (LLMs) when tackling complex reasoning tasks. This approach allows LLMs to engage in extended reasoning processes without the traditionally associated computational costs.

Mila 的研究人員引入了馬爾可夫思維,這是一種新技術,旨在大幅提高大型語言模型 (LLM) 在處理複雜推理任務時的效率。這種方法允許法學碩士參與擴展推理過程,而無需傳統的相關計算成本。

The core idea behind Markovian Thinking is to structure the reasoning chain into fixed-size chunks, effectively breaking the scaling problem that has plagued long LLM responses. Their implementation, named Delethink, shows promising initial results, estimating a reduction in training costs by over two-thirds for a 1.5B parameter model, compared to standard approaches.

馬爾可夫思維背後的核心思想是將推理鏈構建為固定大小的塊,有效地解決了長期困擾LLM響應的擴展問題。他們的實施方案名為 Delethink,顯示出令人鼓舞的初步結果,與標準方法相比,預計 1.5B 參數模型的訓練成本可減少三分之二以上。

The Quadratic Curse and the Markovian Solution

二次詛咒和馬爾可夫解

The challenge with long-chain reasoning in LLMs stems from the quadratic growth of computational costs as the reasoning chain lengthens. Traditional methods struggle to manage this cost, often limiting the model's ability to think deeply.

法學碩士中長鏈推理的挑戰源於隨著推理鏈的延長,計算成本呈二次方增長。傳統方法很難管理這種成本,通常會限制模型深入思考的能力。

Delethink offers a solution by enabling models to reason while maintaining a constant context window size. This is achieved by processing information in fixed-size chunks and using a “carryover” to maintain continuity between chunks. This forces the model to learn how to embed a summary of its progress, or a “textual Markovian state,” into this carryover to continue its reasoning in the next chunk.

Delethink 提供了一種解決方案,使模型能夠推理,同時保持恆定的上下文窗口大小。這是通過處理固定大小的塊中的信息並使用“結轉”來保持塊之間的連續性來實現的。這迫使模型學習如何將其進展的摘要或“文本馬爾可夫狀態”嵌入到該結轉中,以便在下一個塊中繼續推理。

Million-Token Context Windows: A New Era of Accessibility

百萬代幣上下文窗口:可訪問性的新時代

While Markovian Thinking tackles computational efficiency, another breakthrough is expanding the scope of what AI models can process. Google's Gemini 2.5 Flash Lite 09 offers a staggering 1-million-token context window at a remarkably low cost of $0.40. This leap forward opens doors for detailed, large-scale projects that were previously financially prohibitive.

雖然馬爾可夫思維解決了計算效率問題,但另一個突破是擴大人工智能模型可以處理的範圍。 Google 的 Gemini 2.5 Flash Lite 09 以 0.40 美元的極低成本提供了驚​​人的 100 萬個令牌上下文窗口。這一飛躍為以前在財務上令人望而卻步的詳細、大型項目打開了大門。

Gemini 2.5's enhanced reasoning and multimodal functionality are also reshaping workflows across various industries. Its ability to generate precise code and seamlessly integrate text and images makes it a valuable tool for professionals seeking efficiency without compromising quality.

Gemini 2.5 增強的推理和多模式功能也正在重塑各個行業的工作流程。它能夠生成精確的代碼並無縫集成文本和圖像,這使其成為尋求效率而不影響質量的專業人士的寶貴工具。

Real-World Applications and the Future of AI

現實世界的應用和人工智能的未來

The combination of Markovian Thinking and million-token context windows has far-reaching implications. Imagine AI agents debugging large codebases, reasoning for extended periods, and driving scientific discovery. Gemini 2.5 is already being applied to tasks such as structured coding, web scraping, and creative content generation.

馬爾可夫思維和百萬令牌上下文窗口的結合具有深遠的影響。想像一下人工智能代理調試大型代碼庫、長時間推理並推動科學發現。 Gemini 2.5 已經應用於結構化編碼、網頁抓取和創意內容生成等任務。

The success of Markovian Thinking suggests that next-generation reasoning models may even

馬爾可夫思維的成功表明下一代推理模型甚至可能

原始來源:venturebeat

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2026年02月04日 其他文章發表於