市值: $2.5808T -2.66%
成交额(24h): $180.3834B -6.36%
  • 市值: $2.5808T -2.66%
  • 成交额(24h): $180.3834B -6.36%
  • 恐惧与贪婪指数:
  • 市值: $2.5808T -2.66%
加密货币
话题
百科
资讯
加密话题
视频
热门新闻
加密货币
话题
百科
资讯
加密话题
视频
bitcoin
bitcoin

$87959.907984 USD

1.34%

ethereum
ethereum

$2920.497338 USD

3.04%

tether
tether

$0.999775 USD

0.00%

xrp
xrp

$2.237324 USD

8.12%

bnb
bnb

$860.243768 USD

0.90%

solana
solana

$138.089498 USD

5.43%

usd-coin
usd-coin

$0.999807 USD

0.01%

tron
tron

$0.272801 USD

-1.53%

dogecoin
dogecoin

$0.150904 USD

2.96%

cardano
cardano

$0.421635 USD

1.97%

hyperliquid
hyperliquid

$32.152445 USD

2.23%

bitcoin-cash
bitcoin-cash

$533.301069 USD

-1.94%

chainlink
chainlink

$12.953417 USD

2.68%

unus-sed-leo
unus-sed-leo

$9.535951 USD

0.73%

zcash
zcash

$521.483386 USD

-2.87%

加密货币新闻

马尔可夫思维遇见百万代币奇迹:人工智能推理革命

2025/10/22 03:11

探索马尔可夫思维和百万令牌上下文窗口如何彻底改变人工智能推理,使先进的人工智能功能更加高效和易于使用。

马尔可夫思维遇见百万代币奇迹:人工智能推理革命

Markovian Thinking Meets Million-Token Marvels: The AI Reasoning Revolution

马尔可夫思维遇见百万代币奇迹:人工智能推理革命

The AI landscape is rapidly evolving, with advancements like Markovian Thinking and the advent of million-token context windows reshaping what's possible.

人工智能领域正在迅速发展,马尔可夫思维等进步以及百万代币上下文窗口的出现重塑了可能性。

The Rise of Markovian Thinking

马尔可夫思维的兴起

Researchers at Mila have introduced Markovian Thinking, a novel technique designed to drastically improve the efficiency of large language models (LLMs) when tackling complex reasoning tasks. This approach allows LLMs to engage in extended reasoning processes without the traditionally associated computational costs.

Mila 的研究人员引入了马尔可夫思维,这是一种新技术,旨在大幅提高大型语言模型 (LLM) 在处理复杂推理任务时的效率。这种方法允许法学硕士参与扩展推理过程,而无需传统的相关计算成本。

The core idea behind Markovian Thinking is to structure the reasoning chain into fixed-size chunks, effectively breaking the scaling problem that has plagued long LLM responses. Their implementation, named Delethink, shows promising initial results, estimating a reduction in training costs by over two-thirds for a 1.5B parameter model, compared to standard approaches.

马尔可夫思维背后的核心思想是将推理链构建为固定大小的块,有效地解决了长期困扰LLM响应的扩展问题。他们的实施方案名为 Delethink,显示出令人鼓舞的初步结果,与标准方法相比,预计 1.5B 参数模型的训练成本可减少三分之二以上。

The Quadratic Curse and the Markovian Solution

二次诅咒和马尔可夫解

The challenge with long-chain reasoning in LLMs stems from the quadratic growth of computational costs as the reasoning chain lengthens. Traditional methods struggle to manage this cost, often limiting the model's ability to think deeply.

法学硕士中长链推理的挑战源于随着推理链的延长,计算成本呈二次方增长。传统方法很难管理这种成本,通常会限制模型深入思考的能力。

Delethink offers a solution by enabling models to reason while maintaining a constant context window size. This is achieved by processing information in fixed-size chunks and using a “carryover” to maintain continuity between chunks. This forces the model to learn how to embed a summary of its progress, or a “textual Markovian state,” into this carryover to continue its reasoning in the next chunk.

Delethink 提供了一种解决方案,使模型能够推理,同时保持恒定的上下文窗口大小。这是通过处理固定大小的块中的信息并使用“结转”来保持块之间的连续性来实现的。这迫使模型学习如何将其进展的摘要或“文本马尔可夫状态”嵌入到该结转中,以便在下一个块中继续推理。

Million-Token Context Windows: A New Era of Accessibility

百万代币上下文窗口:可访问性的新时代

While Markovian Thinking tackles computational efficiency, another breakthrough is expanding the scope of what AI models can process. Google's Gemini 2.5 Flash Lite 09 offers a staggering 1-million-token context window at a remarkably low cost of $0.40. This leap forward opens doors for detailed, large-scale projects that were previously financially prohibitive.

虽然马尔可夫思维解决了计算效率问题,但另一个突破是扩大人工智能模型可以处理的范围。 Google 的 Gemini 2.5 Flash Lite 09 以 0.40 美元的极低成本提供了惊​​人的 100 万个令牌上下文窗口。这一飞跃为以前在财务上令人望而却步的详细、大型项目打开了大门。

Gemini 2.5's enhanced reasoning and multimodal functionality are also reshaping workflows across various industries. Its ability to generate precise code and seamlessly integrate text and images makes it a valuable tool for professionals seeking efficiency without compromising quality.

Gemini 2.5 增强的推理和多模式功能也正在重塑各个行业的工作流程。它能够生成精确的代码并无缝集成文本和图像,这使其成为寻求效率而不影响质量的专业人士的宝贵工具。

Real-World Applications and the Future of AI

现实世界的应用和人工智能的未来

The combination of Markovian Thinking and million-token context windows has far-reaching implications. Imagine AI agents debugging large codebases, reasoning for extended periods, and driving scientific discovery. Gemini 2.5 is already being applied to tasks such as structured coding, web scraping, and creative content generation.

马尔可夫思维和百万令牌上下文窗口的结合具有深远的影响。想象一下人工智能代理调试大型代码库、长时间推理并推动科学发现。 Gemini 2.5 已经应用于结构化编码、网页抓取和创意内容生成等任务。

The success of Markovian Thinking suggests that next-generation reasoning models may even

马尔可夫思维的成功表明下一代推理模型甚至可能

原文来源:venturebeat

免责声明:info@kdj.com

所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!

如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。

2026年02月03日 发表的其他文章