![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
在當今技術不斷前進的世界中,由大語言模型(LLM)提供動力的AI代理的想法正在改變我們如何看待自動化和互動。
In today's world, where technology keeps moving forward, the idea of AI agents powered by Large Language Models (LLMs) is changing how we see automation and interaction. One exciting development is using KYVE Network to make these AI agents smarter, safer, and more reliable.
在當今技術不斷前進的世界中,由大語言模型(LLM)提供動力的AI代理的想法正在改變我們如何看待自動化和互動。一個令人興奮的發展是使用Kyve Network使這些AI代理更聰明,更安全,更可靠。
What is an LLM AI Agent?
什麼是LLM AI代理?
Before diving into how data archived through KYVE would enable a significant improvement, it’s crucial to understand LLM AI Agents. They are like smart digital assistants that use big language models to understand and generate human-like text. These agents can help with tasks ranging from answering questions to writing content or managing schedules. However, they need a lot of data to learn from and, more importantly, correct data to base their decisions on facts and not on beliefs, which is where KYVE Network comes in.
在深入研究通過Kyve歸檔的數據將實現重大改進之前,了解LLM AI代理至關重要。他們就像智能的數字助手一樣,使用大語言模型來理解和生成類似人類的文本。這些代理可以幫助完成從回答問題到編寫內容或管理時間表的任務。但是,他們需要大量數據來學習,更重要的是,正確的數據以基於事實而不是信念的決定,這是Kyve Network進入的地方。
Are the agents bad?
特工不好嗎?
To be clear, AI models aren't inherently good or bad—their performance depends on the data they learn from and how they are programmed to interpret that data. When an AI learns from incorrect data or in an inaccurate way, it gives incorrect results. It's like teaching students the wrong information—they'll make mistakes when applying what they learned.
需要明確的是,AI模型並不是天生的好壞 - 他們的性能取決於他們從中學到的數據以及如何編程來解釋該數據。當AI從錯誤的數據中學習或以不准確的方式學習時,會產生錯誤的結果。這就像教學生錯誤的信息一樣 - 他們在應用他們學到的東西時會犯錯。
Using (blockchain) data is simple because (the data) i(t)s public!
使用(區塊鏈)數據很簡單,因為(數據)i(t)公開!
The Role of KYVE Network in the AI Agent landscape. KYVE Network is all about making data storage and access more secure and transparent. Think of it like a library where every book (or piece of data) is checked, verified, and kept safe. Here's how KYVE can help with LLM AI Agents:
Kyve網絡在AI代理景觀中的作用。 Kyve Network就是要使數據存儲和訪問更加安全和透明。將其視為圖書館,在該圖書館中,檢查,驗證並保持安全的每本書(或一本數據)。 Kyve可以如何幫助LLM AI代理:
Introducing DataWave, a step toward data correctness.
引入DataWave,這是邁向數據正確性的一步。
Indeed, trust in AI agents has already made progress. But imagine a scenario where there’s no need to double-check the agent’s answers because they are backed by trustless data from multiple verified sources that you could access as a public good. This is the vision KYVE Network brings to the table—elevating AI agents to a level where their applications are grounded in reality, not just speculative promises of a brighter future.
確實,對AI代理商的信任已經取得了進步。但是,想像一下一個場景,無需仔細檢查代理的答案,因為它們得到了來自多個經過驗證的來源的無信任數據,您可以作為公共物品訪問。這是Kyve Network帶來的願景,將AI代理提升到了其應用程序以現實為基礎的水平,而不僅僅是對未來更明亮的未來的投機承諾。
Since its inception, KYVE’s core value has been providing verified and verifiable data while removing the burden of verification from the end user. This enables seamless decision-making in a fully trustless environment, empowering faster, data-driven outcomes.
自成立以來,Kyve的核心價值一直提供經過驗證和可驗證的數據,同時消除了最終用戶的驗證負擔。這可以在完全無信任的環境中無縫決策,從而更快,數據驅動的結果。
More than a tool, DataWave Beta establishes the foundation for scalable and reliable data-driven ecosystems. It calls on users, developers, and innovators to explore KYVE’s infrastructure and unlock the possibilities of a world where real, trustless data powers every decision, chart, and analysis.
Datawave Beta不僅僅是工具,還為可擴展和可靠的數據驅動的生態系統建立了基礎。它呼籲用戶,開發人員和創新者探索Kyve的基礎架構,並解鎖一個世界的可能性,即真實,無信任的數據為每個決策,圖表和分析提供權力。
Conclusion
結論
Integrating KYVE Network into the development of LLM AI Agents is a step towards a future where technology is advanced but also trustworthy and secure. This approach meets current needs and sets a new standard for how we expect AI to function.
將Kyve Network集成到LLM AI代理的開發中是邁向技術先進但也值得信賴和安全的未來的一步。這種方法滿足了當前的需求,並為我們期望AI運作的新標准設定了新標準。
By leveraging KYVE, we're not just enhancing AI; we're redefining what's possible with technology, ensuring that we do so with integrity and foresight as we move forward.
通過利用Kyve,我們不只是增強AI;我們正在重新定義技術的可能性,以確保我們繼續前進時以正直和遠見的方式這樣做。
免責聲明:info@kdj.com
所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!
如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。
-
- 電信的前5個公用事業令牌
- 2025-05-14 20:40:12
- 電信中排名前五的公用事業令牌上的這篇文章將提供指示,並協助讀者賺取代幣
-
-
- 您對加密有什麼了解,但不明白所有炒作的意義?
- 2025-05-14 20:35:12
- 將其視為基於區塊鏈技術的數字資金,這是一個安全的系統,不需要銀行。
-
- 特朗普提議結束加密稅稅,以促進美國製造的令牌和區塊鏈創新工作
- 2025-05-14 20:35:12
- “零加密稅”計劃需要國會批准,特朗普不能獨自執行。
-
- 接下來的600倍劇已經坐在一分錢下嗎?
- 2025-05-14 20:30:12
- 互聯網計算機(ICP)代幣的增長在安靜之後再次開始引起人們的注意,而PI網絡(PI)的增長潛力仍在炒作
-
- Raydium Coin(Ray)隨著看漲的圓形圖案形式的20%超過20%
- 2025-05-14 20:30:12
- 基於索拉納的DEFI協議令牌Raydium Coin(Ray)在過去24小時內飆升了20%以上
-
- 隨著比特幣的上升,這5個Altcoins正在準備確保其各自的電阻
- 2025-05-14 20:25:12
- 除了卡達諾(Cardano)外,還有5個令牌具有爆炸和關閉每月交易的潛力
-
-
- 索拉納(Solana)自2月中旬以來首次收回了$ 180
- 2025-05-14 20:20:12
- 價格飆升是隨著Pump.Fun宣布的新的50%收入分享計劃的代價