市值: $3.286T -3.820%
體積(24小時): $127.8977B -4.110%
  • 市值: $3.286T -3.820%
  • 體積(24小時): $127.8977B -4.110%
  • 恐懼與貪婪指數:
  • 市值: $3.286T -3.820%
加密
主題
加密植物
資訊
加密術
影片
頭號新聞
加密
主題
加密植物
資訊
加密術
影片
bitcoin
bitcoin

$103592.228854 USD

-4.51%

ethereum
ethereum

$2466.558511 USD

-10.73%

tether
tether

$1.000381 USD

0.01%

xrp
xrp

$2.099453 USD

-6.74%

bnb
bnb

$642.327248 USD

-3.78%

solana
solana

$142.274594 USD

-11.02%

usd-coin
usd-coin

$0.999670 USD

-0.01%

dogecoin
dogecoin

$0.171364 USD

-10.88%

tron
tron

$0.269854 USD

-2.21%

cardano
cardano

$0.622386 USD

-10.42%

hyperliquid
hyperliquid

$38.038313 USD

-8.11%

sui
sui

$2.951945 USD

-11.97%

chainlink
chainlink

$12.889430 USD

-12.65%

unus-sed-leo
unus-sed-leo

$8.859921 USD

1.70%

bitcoin-cash
bitcoin-cash

$400.144856 USD

-6.63%

加密貨幣新聞文章

以太坊重新製作協議特徵萊爾將人工智能引入其決策過程

2025/06/12 04:19

Eigenlayer與AI開發平台有知覺的合作,將介紹Dobby法官,該法官稱為“ AI裁決者”

以太坊重新製作協議特徵萊爾將人工智能引入其決策過程

EigenLayer, the Ethereum restaking protocol, is introducing artificial intelligence into its decision-making process, aiming to ensure that proposed actions comply with the protocol’s rules.

以太坊重新制定協議Eigenlayer正在將人工智能引入其決策過程中,旨在確保符合協議規則的擬議行動。

In a partnership with AI development platform Sentient, EigenLayer will introduce Judge Dobby, which Sentient calls an “AI adjudicator” focused on the subjective decision-making needed to reason through complex, real-world corporate governance scenarios.

在與AI開發平台有知覺的合作夥伴關係中,Eigenlayer將介紹Dobby法官,該法官稱之為“ AI裁決者”,重點是通過複雜的,現實世界中的現實世界政府治理場景來推理所需的主觀決策。

While traditional AI systems excel at tasks with clear, correct answers, such as translation, classification, and recommendations, governance is full of gray areas, according to Sentient.

根據Sentient的說法,雖然傳統的AI系統在具有清晰,正確答案(例如翻譯,分類和建議)的任務中表現出色,但治理卻充滿了灰色區域。

“Current models fail to offer meaningful legitimacy when answering subjective questions, such as who deserves funding in a contested grant round [or] which contributors deserve recognition in an open-source project?” the firm said.

“當前的模型在回答主觀問題時無法提供有意義的合法性,例如誰值得在有爭議的贈款回合中獲得資金[或]在開源項目中應得到認可的資金?”該公司說。

EigenLayer is the largest Ethereum restaking protocol with nearly $13 billion in total value locked (TVL), according to DeFiLlama. It enables users to restake their staked ETH, using it to provide security for third-party services to earn additional yield. The protocol’s EIGEN token is up 22% in the past month and trades at a $2.7 billion valuation.

根據Defillama的數據,Eigenlayer是最大的以太坊重新攜帶協議,總價值鎖定(TVL)近130億美元。它使用戶能夠重新使用其固定的ETH,並使用它為第三方服務提供安全性,以賺取額外的收益。該協議的特徵令牌在過去一個月中增長了22%,估值為27億美元。

“Governance in decentralized protocols requires objective assessment of whether proposed actions comply with established rules and community standards,” said Sreeram Kannan, founder and CEO of EigenLayer. “Judge Dobby, built on Sentient's loyal AI framework… represents an interesting development in the push toward utilizing AI to build more robust and efficient governance for decentralized systems.”

Eigenlayer的創始人兼首席執行官Sreeram Kannan說:“分散協議中的治理需要客觀評估擬議的行動是否符合已建立的規則和社區標準。” “基於Sondient的忠誠AI框架,Dobby法官代表著一個有趣的發展,以利用AI來利用AI來為分散系統建立更強大,更有效的治理。”

EigenLayer will work with CHANCERY, Sentient's open-source benchmarking tool that tests an AI’s ability to perform the kind of complex reasoning required to come up with good solutions in real governance scenarios.

Eigenlayer將與Chancery合作,該Chancery是SONTIENT的開源基準測試工具,該工具測試了AI在實際治理方案中執行良好解決方案所需的複雜推理的能力。

“At Sentient, we are focused on embedding accountability into AI-driven dispute resolution in domains where socio-technical decision-making is critical, such as corporate governance and public resource allocation,” said Atharva Manavkar, founder and CEO of Sentient. “We are excited to be working with EigenLayer to bring together the best of blockchain and AI.”

“在社會技術決策至關重要的領域中,我們專注於將問責制納入AI驅動的爭議解決方案,例如公司治理和公共資源分配,” Sonsient的創始人兼首席執行官Atharva Manavkar說。 “我們很高興能與Eigenlayer合作,將最佳的區塊鍊和AI融合在一起。”

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2025年06月14日 其他文章發表於