市值: $3.7036T 2.25%
體積(24小時): $154.6057B -21.23%
  • 市值: $3.7036T 2.25%
  • 體積(24小時): $154.6057B -21.23%
  • 恐懼與貪婪指數:
  • 市值: $3.7036T 2.25%
加密
主題
加密植物
資訊
加密術
影片
頭號新聞
加密
主題
加密植物
資訊
加密術
影片
bitcoin
bitcoin

$110323.126235 USD

1.94%

ethereum
ethereum

$3864.833023 USD

1.25%

tether
tether

$1.000393 USD

0.02%

bnb
bnb

$1133.877748 USD

4.86%

xrp
xrp

$2.393640 USD

1.11%

solana
solana

$192.566078 USD

6.48%

usd-coin
usd-coin

$0.999906 USD

0.00%

tron
tron

$0.313196 USD

-2.80%

dogecoin
dogecoin

$0.194944 USD

2.29%

cardano
cardano

$0.643216 USD

2.65%

hyperliquid
hyperliquid

$39.990234 USD

7.27%

chainlink
chainlink

$17.375446 USD

0.89%

ethena-usde
ethena-usde

$0.999536 USD

0.02%

stellar
stellar

$0.310716 USD

0.33%

bitcoin-cash
bitcoin-cash

$480.762464 USD

1.14%

加密貨幣新聞文章

SwiReasoning:大型語言模型推理模式的新領域

2025/10/19 16:01

探索 SwiReasoning,這是一種新穎的 AI 框架,通過在推理模式之間動態切換、提高準確性和令牌使用來提高大型語言模型的效率。

SwiReasoning:大型語言模型推理模式的新領域

The world of large language models (LLMs) is constantly evolving, and a recent development is making waves: SwiReasoning. This innovative framework, designed by researchers at Georgia Tech and Microsoft, promises to revolutionize how LLMs approach reasoning tasks. By dynamically switching between different reasoning strategies, SwiReasoning aims to boost both accuracy and efficiency.

大型語言模型 (LLM) 的世界在不斷發展,最近的一項發展正在掀起波瀾:SwiReasoning。這個創新框架由佐治亞理工學院和微軟的研究人員設計,有望徹底改變法學碩士處理推理任務的方式。通過在不同的推理策略之間動態切換,SwiReasoning 旨在提高準確性和效率。

Understanding SwiReasoning's Core: Reasoning Modes

理解 SwiReasoning 的核心:推理模式

At the heart of SwiReasoning lies its ability to toggle between two distinct reasoning modes:

SwiReasoning 的核心在於它能夠在兩種不同的推理模式之間切換:

  • Chain-of-Thought: This mode tackles problems step-by-step, using plain language to break down complex tasks.
  • Latent Reasoning: This mode operates within the model's vector space, performing reasoning without generating explicit text output.

The framework intelligently decides when to switch modes by monitoring the model's uncertainty, measured by the entropy of token probabilities. Low entropy indicates confidence, prompting a shift to explicit mode to solidify the line of thought. Conversely, high entropy signals uncertainty, triggering a return to latent mode to explore alternative solutions.

該框架通過監控模型的不確定性(通過令牌概率的熵來衡量)來智能地決定何時切換模式。低熵表明信心,促使轉向顯式模式以鞏固思路。相反,高熵表示不確定性,觸發返回潛在模式以探索替代解決方案。

Preventing Overthinking and Enhancing Efficiency

防止過度思考並提高效率

To prevent models from getting stuck in unproductive thought loops, SwiReasoning incorporates several mechanisms. Asymmetric dwell times ensure that switching to explicit mode happens instantly, while returning to latent mode requires a minimum number of steps. A cap on the number of allowed mode switches further prevents endless internal debate, forcing the model to wrap up its reasoning when it reaches half the limit or to provide an immediate response if it exceeds the maximum.

為了防止模型陷入無效的思維循環,SwiReasoning 結合了多種機制。不對稱的停留時間確保立即切換到顯式模式,而返回到潛在模式則需要最少的步驟。對允許的模式切換數量的上限進一步防止了無休止的內部爭論,迫使模型在達到限制的一半時結束其推理,或者在超過最大值時提供立即響應。

The Impact of SwiReasoning: Performance and Token Efficiency

SwiReasoning 的影響:性能和代幣效率

Tests on smaller models, such as Qwen3-8B, Qwen3-1.7B, and Deepseek R1, have shown promising results. SwiReasoning improved accuracy by up to 2.8 percent on math tasks and 2 percent on science tasks, particularly on the most challenging problems. Under strict token constraints, the framework significantly enhanced token efficiency, achieving improvements of 56 to 79 percent, and in some cases by as much as 6.8 times compared to standard chain-of-thought.

對 Qwen3-8B、Qwen3-1.7B 和 Deepseek R1 等較小模型的測試顯示出有希望的結果。 SwiReasoning 將數學任務的準確性提高了 2.8%,將科學任務的準確性提高了 2%,特別是在最具挑戰性的問題上。在嚴格的代幣約束下,該框架顯著提高了代幣效率,與標準思想鏈相比,實現了 56% 至 79% 的改進,在某些情況下高達 6.8 倍。

Real-World Implications and Accessibility

現實世界的影響和可及性

One of the most appealing aspects of SwiReasoning is that it requires no extra training and can be easily integrated as a replacement for standard generation functions. The implementation is available on GitHub, making it accessible to researchers and developers looking to enhance the reasoning capabilities of their LLMs.

SwiReasoning 最吸引人的方面之一是它不需要額外的培訓,並且可以輕鬆集成作為標準生成函數的替代品。該實現可在 GitHub 上獲取,讓希望增強法學碩士推理能力的研究人員和開發人員可以使用它。

A Glimpse into the Future

未來一瞥

SwiReasoning represents a significant step forward in the quest to improve the reasoning abilities of large language models. Its dynamic approach to reasoning, combined with its focus on efficiency, holds great promise for a wide range of applications. As LLMs continue to evolve, frameworks like SwiReasoning will undoubtedly play a crucial role in shaping their future.

SwiReasoning 代表了在提高大型語言模型推理能力方面向前邁出的重要一步。其動態推理方法加上對效率的關注,為廣泛的應用帶來了巨大的前景。隨著法學碩士的不斷發展,像 SwiReasoning 這樣的框架無疑將在塑造其未來方面發揮至關重要的作用。

So, there you have it! SwiReasoning: making LLMs a little bit smarter, one token at a time. Who knows? Maybe one day, they'll be writing their own blog posts. But until then, we'll keep you in the loop!

所以,你就有了! SwiReasoning:讓法學碩士變得更聰明一點,一次一個令牌。誰知道?也許有一天,他們會寫自己的博客文章。但在那之前,我們會讓您隨時了解最新情況!

原始來源:the-decoder

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2025年10月24日 其他文章發表於