市值: $3.3104T -0.610%
體積(24小時): $180.7418B 40.450%
  • 市值: $3.3104T -0.610%
  • 體積(24小時): $180.7418B 40.450%
  • 恐懼與貪婪指數:
  • 市值: $3.3104T -0.610%
加密
主題
加密植物
資訊
加密術
影片
頭號新聞
加密
主題
加密植物
資訊
加密術
影片
bitcoin
bitcoin

$101937.247657 USD

-1.92%

ethereum
ethereum

$2440.088811 USD

-3.10%

tether
tether

$1.000193 USD

0.01%

xrp
xrp

$2.459614 USD

3.05%

bnb
bnb

$645.663399 USD

-1.18%

solana
solana

$169.340061 USD

-2.43%

usd-coin
usd-coin

$1.000185 USD

0.04%

dogecoin
dogecoin

$0.221860 USD

-5.74%

cardano
cardano

$0.788860 USD

-2.57%

tron
tron

$0.263711 USD

-1.20%

sui
sui

$3.873057 USD

-2.82%

chainlink
chainlink

$16.315579 USD

-4.09%

avalanche
avalanche

$23.848565 USD

-4.36%

stellar
stellar

$0.301245 USD

-3.23%

shiba-inu
shiba-inu

$0.000015 USD

-6.14%

加密貨幣新聞文章

您是否曾經想暫停自動工作流程以等待人類的決定?

2025/05/13 07:17

也許您需要在提供雲資源,將機器學習模型推廣到生產或收取客戶的信用卡之前需要批准。

Have you ever wanted to pause an automated workflow to wait for a human decision? Maybe you need approval before provisioning cloud resources, promoting a machine learning model to production, or charging a customer’s credit card.

您是否曾經想暫停自動工作流程以等待人類的決定?也許您需要在提供雲資源,將機器學習模型推廣到生產或收取客戶的信用卡之前需要批准。

In many data science and machine learning workflows, automation gets you 90% of the way — but that critical last step often needs human judgment. Especially in production environments, model retraining, anomaly overrides, or large data movements require careful human review to avoid expensive mistakes.

在許多數據科學和機器學習工作流程中,自動化為您帶來了90%的途徑 - 但是關鍵的最後一步通常需要人類的判斷。尤其是在生產環境中,模型再培訓,異常覆蓋或大型數據移動需要仔細的人類審查,以避免昂貴的錯誤。

In my case, I needed to manually review situations where my system flagged more than 6% of customer data for anomalies — often due to accidental pushes by customers. Before I implemented a proper workflow, this was handled informally: developers would directly update production databases (!) — risky, error-prone, and unscalable.

就我而言,我需要手動查看我的系統標記超過6%的客戶數據異常數據的情況 - 通常是由於客戶意外推動。在我實施適當的工作流程之前,這是非正式處理的:開發人員將直接更新生產數據庫(!) - 風險,容易出錯且不計。

To solve this, I built a scalable manual approval system using AWS Step Functions, Slack, Lambda, and SNS — a cloud-native, low-cost architecture that cleanly paused workflows for human approvals without spinning up idle compute.

為了解決這個問題,我使用AWS步驟功能,Slack,Lambda和SNS建立了一個可擴展的手動批准系統,這是一種雲本地,低成本的體系結構,可干淨地暫停人工批准的工作流,而無需旋轉閒置計算。

In this post, I’ll walk you through the full design, the AWS resources involved, and how you can apply it to your critical workflows.

在這篇文章中,我將帶您完成完整的設計,所涉及的AWS資源以及如何將其應用於關鍵工作流程。

Let’s get into it 👇

讓我們來👇

The Solution

解決方案

My application is deployed in the AWS ecosystem, so we’ll use Aws Step Functions to build a state machine that:

我的應用程序已部署在AWS生態系統中,因此我們將使用AWS步驟函數來構建一台狀態計算機:

Here is a youtube video showing the demo and actual application in action:

這是一個YouTube視頻,顯示了演示和實際應用程序:

I have also hosted the live demo app here →👉 https://v0-manual-review-app-fwtjca.vercel.app

我還在這里托管了實時演示應用→👉https://v0-manual-review-app-fwtjca.vercel.app

All code is hosted here with the right set of IAM permissions.

所有代碼均在此處託管,其中包含正確的IAM權限。

Step-by-Step Implementation

分步實現

The flow above generates a dataset, uploads it to AWS S3 and if a review is required, then invokes the Manual Review lambda. On the manual review step, we’ll use a Task lambda with an invoke on WaitForTaskToken, which pauses execution until resumed. The lambda reads the token this way:

上面的流量生成數據集,將其上傳到AWS S3,如果需要進行審查,請調用手動評論lambda。在手動審核步驟中,我們將使用一個任務lambda和WaitfortaskToken的Invoke,該任務停止執行直至恢復。 Lambda以這種方式讀取令牌:

This Lambda sends a Slack message that includes the task token so the function knows what execution to resume.

此lambda發送了一個休閒消息,其中包含任務令牌,因此該函數知道要恢復執行什麼。

2. Before the we send out the slack notification, we need to

2。在我們發送鬆弛通知之前,我們需要

I followed the youtube video here for my setup.

我在此處遵循YouTube視頻進行設置。

3. Once the above is setup, setup the variables into the web-hook step of the slack workflow:

3。一旦設置了上述,將變量設置為Slack Workflow的Web-Hook步驟:

And use the variables with a helpful note in the following step:

並在以下步驟中使用有用的說明的變量:

The final workflow will look like this:

最終的工作流程看起來像這樣:

4. Send a Slack Notification published to an SNS topic (you can alternately use slack-sdk as well) with job parameters. Here is what the message will look like:

4.將發布的Slack通知發送到SNS主題(您也可以使用Slack-SDK)與作業參數一起發送。這是消息的樣子:

This Lambda sends a Slack message that includes the task token so the function knows what execution to resume.

此lambda發送了一個休閒消息,其中包含任務令牌,因此該函數知道要恢復執行什麼。

5. Once a review notification is received in slack, the user can approve or reject it. The step function goes into a wait state until it receives a user response; however the task part is set to expire in 24 hours, so inactivity will timeout the step function.

5。一旦在Slack收到審核通知後,用戶就可以批准或拒絕。步驟功能進入等待狀態,直到它收到用戶響應為止;但是,任務零件設置為24小時內到期,因此不活動將超時該步驟功能。

Based on whether the user approves or rejects the review request, the rawPath gets set and can be parsed here: code

根據用戶是批准還是拒絕審核請求,將設置RAWPATH並可以在此處解析:代碼

The receiving API Gateway + Lambda combo:

接收API網關 + lambda組合:

Example:

例子:

Note: Lambda configured with WaitForTaskToken must wait. If you don’t send the token, your workflow just stalls.

注意:用WaitfortaskToken配置的Lambda必須等待。如果您不發送令牌,那麼您的工作流程只是失速。

Bonus: If you need email or SMS alerts, use SNS to notify a broader group.Just sns.publish() from within your Lambda or Step Function.

獎勵:如果您需要電子郵件或SMS警報,請使用SNS通知更廣泛的組。 just sns.publish()從您的lambda或step函數中。

Testing

測試

Once the manual approval system was wired up, it was time to kick the tires. Here’s how I tested it:

手動批准系統連接起來後,就該踢輪胎了。這是我測試的方式:

I tested all major paths:

我測試了所有主要途徑:

Behind the scenes, I also verified that :

在幕後,我還驗證了:

I highly recommend testing not just happy paths, but also “what if nobody clicks?” and “what if Slack glitches?” — catching these edge cases early saved me headaches later.

我強烈建議您不僅要測試快樂的道路,還建議“如果沒人點擊怎麼辦?”和“如果鬆弛的故障怎麼辦?” - 儘早抓住這些邊緣案件使我頭痛。

Lessons Learned

經驗教訓

Wrapping Up

總結

Adding human-in-the-loop logic doesn’t have to mean duct tape and cron jobs. With Step Functions + Slack, you can build reviewable, traceable, and production-safe approval flows.

添加人類的邏輯並不一定意味著膠帶和Cron工作。使用步驟功能 + Slack,您可以構建可審查,可追溯和生產安全的批准流。

If this helped, or you’re trying something similar, drop a note in the comments! Let’s build better workflows.

如果這有所幫助,或者您正在嘗試類似的事情,請在評論中放下註釋!讓我們構建更好的工作流程。

Note: All images in this article were created by the author

注意:本文中的所有圖像均由作者創建

免責聲明:info@kdj.com

所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!

如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。

2025年05月13日 其他文章發表於