![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
加密貨幣新聞文章
Introducing Phi-4-Reasoning-Plus: A Compact, High-Performing Open-Weight Language Model for Reasoning Across Domains
2025/05/01 23:02
Microsoft Research today announced the release of Phi-4-Reasoning-Plus, a compact yet high-performing open-weight language model designed for structured reasoning across domains like math, coding, science, and logic.
This upgraded 14-billion-parameter model builds on the architecture of the original Phi-4. It's densely packed and decoder-only, prioritizing quality over sheer size. Trained on 16 billion tokens—over half of them unique—the model blends synthetic and curated web data to attain a level of performance that rivals or even surpasses much larger models.
Despite its relatively modest size, Phi-4-Reasoning-Plus outperforms 70B+ models like DeepSeek-R1-Distill on challenging benchmarks. On the AIME 2025 math exam, it achieves a higher “pass@1” rate across all 30 problems compared to heavyweight competitors—nearly reaching the performance of DeepSeek-R1's full 671B parameter version.
The model's training pipeline combines supervised fine-tuning with reinforcement learning:
* Supervised fine-tuning utilized curated chain-of-thought datasets with special tags to segregate intermediate reasoning from final answers—enhancing transparency and coherence.
* A second RL phase, using just 6,400 math problems and Microsoft's Group Relative Policy Optimization (GRPO) algorithm, boosted the model's depth, accuracy, and formatting consistency.
Phi-4-Reasoning-Plus natively supports 32k-token context lengths (up to 64k in tests), making it ideal for heavy text tasks like legal reasoning, financial analysis, or technical Q&A—especially when memory or latency are critical.
It integrates seamlessly with popular inference frameworks such as Hugging Face Transformers, vLLM, llama.cpp, and Ollama. It's released under the permissive MIT license, allowing commercial use, fine-tuning, and distillation without any restrictions.
Designed for modular AI pipelines and interpretable outputs, Phi-4-Reasoning-Plus is a strong fit for teams managing AI deployment, orchestration, or compliance. Its structured output format aids explainability, while its performance under resource constraints enables scalable real-time reasoning.
Microsoft has conducted extensive safety testing, including red teaming and evaluations via tools like Toxigen. These measures render it more suitable for enterprise use in regulated industries.
Phi-4-Reasoning-Plus marks a growing trend: small, efficient models that overachieve. For technical leaders balancing performance, cost, and control, it provides a powerful, open, and adaptable reasoning engine—capable of enterprise integration without the hefty infrastructure footprint of mega-models.
免責聲明:info@kdj.com
所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!
如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。
-
- 比特幣,企鵝和模因硬幣:加密鎮的狂野騎行
- 2025-07-31 15:55:54
- 深入研究比特幣企鵝(Bpengu)的熱潮,由矮胖的企鵝的Pengu領導的企鵝模因硬幣浪潮以及更廣泛的模因硬幣市場趨勢。
-
- 鯨魚運動和山寨幣:購買壓力加熱!
- 2025-07-31 15:54:08
- Dogecoin鯨魚正在做出大動作,一家名為Ether Machine的公司購買了很多ETH。這對市場意味著什麼?讓我們潛入!
-
-
-
- XRP,AI和價格預測:解碼加密未來
- 2025-07-31 13:17:06
- AI模型正在介意XRP的潛力,但是監管障礙和市場波動使價格預測成為狂野的旅程。 XRP會反抗期望嗎?
-
- XRP投資:專家意見和爆炸性增長的潛力
- 2025-07-31 13:06:57
- 分析有關XRP投資的專家意見,探索價格預測,並檢查可能推動大幅增長的因素。
-
- XRP價格:鯨魚購買和象徵性勺子 - 接下來是什麼?
- 2025-07-31 13:00:57
- XRP價格的穩定約為3.00美元。鯨魚購買和國庫計劃是否足以加劇集會?獲取令牌勺和專家分析。
-
- 成像網絡,RLUSD付款和分散應用程序:Web3的新時代?
- 2025-07-31 13:00:20
- 探索成像網絡,RLUSD付款和分散應用程序之間的協同作用,以塑造Web3的未來。
-
- 模因硬幣:長期購買和持有?解碼炒作
- 2025-07-31 12:45:00
- 導航2025年的模因硬幣狂熱:發現長期模因硬幣投資的主要見解和趨勢。購買和持有是明智的嗎?