![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
加密貨幣新聞文章
Introducing Phi-4-Reasoning-Plus: A Compact, High-Performing Open-Weight Language Model for Reasoning Across Domains
2025/05/01 23:02
Microsoft Research today announced the release of Phi-4-Reasoning-Plus, a compact yet high-performing open-weight language model designed for structured reasoning across domains like math, coding, science, and logic.
This upgraded 14-billion-parameter model builds on the architecture of the original Phi-4. It's densely packed and decoder-only, prioritizing quality over sheer size. Trained on 16 billion tokens—over half of them unique—the model blends synthetic and curated web data to attain a level of performance that rivals or even surpasses much larger models.
Despite its relatively modest size, Phi-4-Reasoning-Plus outperforms 70B+ models like DeepSeek-R1-Distill on challenging benchmarks. On the AIME 2025 math exam, it achieves a higher “pass@1” rate across all 30 problems compared to heavyweight competitors—nearly reaching the performance of DeepSeek-R1's full 671B parameter version.
The model's training pipeline combines supervised fine-tuning with reinforcement learning:
* Supervised fine-tuning utilized curated chain-of-thought datasets with special tags to segregate intermediate reasoning from final answers—enhancing transparency and coherence.
* A second RL phase, using just 6,400 math problems and Microsoft's Group Relative Policy Optimization (GRPO) algorithm, boosted the model's depth, accuracy, and formatting consistency.
Phi-4-Reasoning-Plus natively supports 32k-token context lengths (up to 64k in tests), making it ideal for heavy text tasks like legal reasoning, financial analysis, or technical Q&A—especially when memory or latency are critical.
It integrates seamlessly with popular inference frameworks such as Hugging Face Transformers, vLLM, llama.cpp, and Ollama. It's released under the permissive MIT license, allowing commercial use, fine-tuning, and distillation without any restrictions.
Designed for modular AI pipelines and interpretable outputs, Phi-4-Reasoning-Plus is a strong fit for teams managing AI deployment, orchestration, or compliance. Its structured output format aids explainability, while its performance under resource constraints enables scalable real-time reasoning.
Microsoft has conducted extensive safety testing, including red teaming and evaluations via tools like Toxigen. These measures render it more suitable for enterprise use in regulated industries.
Phi-4-Reasoning-Plus marks a growing trend: small, efficient models that overachieve. For technical leaders balancing performance, cost, and control, it provides a powerful, open, and adaptable reasoning engine—capable of enterprise integration without the hefty infrastructure footprint of mega-models.
免責聲明:info@kdj.com
所提供的資訊並非交易建議。 kDJ.com對任何基於本文提供的資訊進行的投資不承擔任何責任。加密貨幣波動性較大,建議您充分研究後謹慎投資!
如果您認為本網站使用的內容侵犯了您的版權,請立即聯絡我們(info@kdj.com),我們將及時刪除。
-
- Memecoin市場中知識產權的模糊水域
- 2025-06-12 22:35:13
- 區塊鏈空間中知識產權的模糊水域是眾所周知的,尤其是與揮發性的成員市場有關。
-
-
- 每日流入2.4億美元的以太坊ETF超過比特幣
- 2025-06-12 22:32:11
- 週三,美國上市的以太坊ETF吸引了超過2.403億美元的淨流入,超過了流入現貨比特幣ETF的1.645億美元。
-
-
-
- Opto Miner致力於打破採礦的門檻,並為所有人打開新的加密體驗
- 2025-06-12 22:20:12
- 不需要昂貴的設備或專業知識,只有手機就足以輕鬆開始雲挖掘旅程!
-
- 策略(MSTR)在納斯達克(Nasdaq
- 2025-06-12 22:20:12
- 戰略(MSTR)已正式推出了納斯達克股票的第三個“由比特幣支持的優先股”進行交易,並於週三首次亮相。
-
- 以太坊基金會發布了一份綜合報告,概述了網絡需要改進的主要領域
- 2025-06-12 22:15:12
- 新發表的萬億美元安全性(1TS)報告介紹了旨在加強以太坊(ETH)基礎設施並保護其擁有的巨大價值的路線圖。
-
- Coindcx列出了地理令牌,擴大了印度動態市場的佔地面積
- 2025-06-12 22:15:12
- Geodnet是分散的高精度地理空間解決方案的全球領導者,正在通過這一戰略舉動擴大在印度的足跡。