시가총액: $3.3978T 0.860%
거래량(24시간): $96.4309B -43.650%
  • 시가총액: $3.3978T 0.860%
  • 거래량(24시간): $96.4309B -43.650%
  • 공포와 탐욕 지수:
  • 시가총액: $3.3978T 0.860%
암호화
주제
암호화
소식
cryptostopics
비디오
최고의 뉴스
암호화
주제
암호화
소식
cryptostopics
비디오
bitcoin
bitcoin

$107957.245065 USD

0.19%

ethereum
ethereum

$2508.355924 USD

-1.20%

tether
tether

$1.000227 USD

0.00%

xrp
xrp

$2.316526 USD

-0.45%

bnb
bnb

$665.985271 USD

0.37%

solana
solana

$172.342327 USD

-1.37%

usd-coin
usd-coin

$0.999629 USD

-0.02%

dogecoin
dogecoin

$0.222496 USD

-2.48%

cardano
cardano

$0.740686 USD

-1.75%

tron
tron

$0.269423 USD

-1.18%

sui
sui

$3.604351 USD

-1.17%

hyperliquid
hyperliquid

$33.793015 USD

4.53%

chainlink
chainlink

$15.353547 USD

-1.83%

avalanche
avalanche

$22.811071 USD

-1.87%

stellar
stellar

$0.285294 USD

-1.28%

암호화폐 뉴스 기사

Mem0: A New Memory-Focused System for LLMs to Retain Information Across Sessions

2025/05/01 03:51

Mem0: A New Memory-Focused System for LLMs to Retain Information Across Sessions

Large language models (LLMs) are revolutionizing natural language processing (NLP) with their ability to generate fluent responses, emulate tone, and follow complex instructions. However, these models still struggle with a critical limitation: they have difficulty retaining information across multiple sessions.

This limitation becomes increasingly pressing as LLMs are integrated into applications that require long-term engagement with users. From personal assistance and health management to tutoring and more specialized tasks, the seamless flow of conversation is paramount. In real-life conversations, people recall preferences, infer behaviors, and construct mental maps over time. A person who mentioned their dietary restrictions last week expects those to be taken into account the next time food is discussed. Similarly, a user who described their hometown yesterday anticipates the LLM to recognize it and use it in later greetings. Without mechanisms to store and retrieve such details across conversations, AI agents fail to offer the consistency and reliability expected from them, ultimately undermining user trust.

The central challenge with today’s LLMs lies in their inability to persist relevant information beyond the boundaries of a conversation’s context window. These models rely on a limited capacity for tokens, which are units of language used by the model, with some models having a capacity of as high as 128K or 200K tokens. However, when long interactions span days or weeks, even these expanded windows become insufficient. More critically, the quality of attention—the model’s ability to focus on and process specific tokens—degrades over more distant tokens, rendering it harder for the model to locate or utilize earlier context effectively. For instance, a user may personally introduce themselves, switch to a completely different topic like astronomy, and only much later return to the original subject to ask for the personally mentioned fact. Without a robust memory system, the AI will likely ignore the previously mentioned details and instead answer based on the last 10 messages, which in this case would be about astronomy, leading to an incorrect reply. This creates friction and inconvenience, especially in scenarios where continuity and accuracy are crucial. The issue is not just about the model forgetting information, but also about it potentially retrieving the wrong information from irrelevant parts of the conversation history due to token overflow and thematic drift.

Several attempts have been made to address this memory gap. Some systems, like those from Google AI and Stanford, rely on retrieval-augmented generation (RAG) techniques. These systems use a separate component to search for and retrieve relevant text chunks from a large knowledge base or prior conversations using similarity searches. Another category of systems employs full-context approaches, where the entire conversation history is simply re-fed into the model at the beginning of each turn. Finally, there are proprietary memory solutions like OpenAI’s Memory API and open-source alternatives like PEGASO, which try to store past exchanges in specialized vector databases or structured formats. However, these methods often lead to inefficiencies. For instance, RAG systems can retrieve excessive irrelevant information, while full-context approaches increase latency and token costs. Proprietary and open-source solutions may struggle to consolidate updates to existing memories in a meaningful way, and they lack effective mechanisms to detect conflicting data or prioritize newer updates. This fragmentation of memories hinders the models’ ability to reason reliably over time.

To address these limitations, a research team from Mem0.ai developed a novel memory-focused system called Mem0. This architecture introduces a more dynamic mechanism to extract, consolidate, and retrieve information from conversations as they unfold. The design of Mem0 enables the system to systematically identify useful facts from ongoing interactions, assess their relevance and uniqueness, and integrate them into a persistent memory store that can be consulted in future sessions. In essence, Mem0 is capable of "listening" to conversations, extracting key facts, and updating a central memory with these facts. The researchers also proposed a graph-enhanced version of the system, denoted as Mem0g, which builds upon the base system by structuring information in relational formats, connecting facts through entities and their properties.

These models were tested using the LOCOMO benchmark, a standard framework for evaluating conversational memory systems. They compared six categories of memory-enabled systems: memory-augmented agents, RAG methods with varying configurations, full-context approaches, and both open-source and proprietary tools. The goal was to assess these systems' ability to process a wide range of question types, from single-hop factual lookups to multi-hop and open-domain queries.

The core of the Mem0 system involves two operational stages. In the first phase, the model processes pairs of messages, typically a user’s question and the assistant’s response, along with summaries of recent conversations. A combination of a global conversation summary over the last hour and the last 10 messages serves as the input for a large language model (LLM) that extracts salient facts. For instance, if the user asks "What is the capital of France?" and the assistant responds with "The capital of France is Paris," the fact extractor would identify "capital_of(France,

부인 성명:info@kdj.com

제공된 정보는 거래 조언이 아닙니다. kdj.com은 이 기사에 제공된 정보를 기반으로 이루어진 투자에 대해 어떠한 책임도 지지 않습니다. 암호화폐는 변동성이 매우 높으므로 철저한 조사 후 신중하게 투자하는 것이 좋습니다!

본 웹사이트에 사용된 내용이 귀하의 저작권을 침해한다고 판단되는 경우, 즉시 당사(info@kdj.com)로 연락주시면 즉시 삭제하도록 하겠습니다.

2025年05月26日 에 게재된 다른 기사