Apprenez à construire un programme Python qui simule le retournement d'une pièce 100 fois, calcule des séquences de têtes et suit la plus grande séquence sur plusieurs essais. --- Cette vidéo est basée sur la question https://stackoverflow.com/q/71575309/ demandée par l'utilisateur 'Rebecca Krouse' (https://stackoverflow.com/u/18500500/) et sur la réponse https://stackoverflow.com/a/71575530/ https://stackoverflow.com/u/18116417/) sur le site Web «Stack Overflow». Merci à ces grands utilisateurs et à la communauté StacKExchange pour leurs contributions. Visitez ces liens pour le contenu original et tout plus de détails, tels que des solutions alternatives, les dernières mises à jour / développements sur le sujet, les commentaires, l'historique de révision, etc. Par exemple, le titre original de la question était: Python Coin Flip avec des fonctions également, Contenu (sauf la musique) sous licence CC BY-SA https://meta.stacKExchange.com/help/licensing https://creativecommons.org/licenses/by-sa/4.0/), et le poste de réponse original est autorisé en vertu de la licence 'CC BY-SA 4.0' (https://creativecommons.org/licenses/by-sa/4.0/). Si quelque chose vous semble, n'hésitez pas à m'écrire chez vlogize [at] gmail [dot] com. --- Simulant des flips de monnaie en python: suivi la plus grande séquence de têtes de retournement de pièces est un exemple classique de hasard dans la programmation. Que vous cherchiez à simuler un simple coup de monnaie pour le plaisir, ou que vous ayez besoin d'un outil d'apprentissage pour comprendre les fonctions et les boucles, la création d'un programme Python pour Coin Flip peut être assez gratifiant. Dans ce guide, nous vous guiderons à travers le processus de création d'un programme Python qui simule le retournement d'une pièce 100 fois, puis trouve la plus grande séquence de têtes (H) sur 10 000 essais. Comprendre le problème, vous voulez une fonction Python qui retournera une pièce 100 fois, évaluer ces résultats pour trouver la plus longue séquence de têtes qu'il peut réaliser et répéter cette expérience 10 000 fois. La clé ici est d'utiliser efficacement les fonctions pour compartimenter les tâches: retourner une pièce: générer le résultat d'un flip de pièce. Simuler les flips: retournez la pièce plusieurs fois et renvoyez les résultats. Count Streaks: Évaluez les résultats pour trouver combien de fois les têtes sont apparues consécutivement. Résultats agrégés: exécutez le processus plusieurs fois et signalez la plus longue séquence observée. Faisons-le 1. Flip la pièce La première étape consiste à créer une fonction qui simule un retournement de pièces. Cette fonction doit renvoyer H pour les têtes ou t pour les queues au hasard. [[Voir la vidéo pour révéler cet extrait de texte ou de code]] 2. Simuler les flips ensuite, nous avons besoin d'une fonction qui utilise la fonction Flip pour générer une liste de flips. Cette fonction prendra le nombre de flips comme argument et renverra une liste contenant les résultats. [[Voir la vidéo pour révéler cet extrait de texte ou de code]] 3. Comptez les stries pour déterminer la plus longue séquence de têtes, nous implémenterons une fonction qui itère à travers la liste générée dans la fonction Simulate. Ici, nous garderons une trace de la séquence actuelle de têtes et de la séquence maximale trouvée: [[voir la vidéo pour révéler cet extrait de texte ou de code]] 4. Fonction principale pour agréger les résultats enfin, nous créerons la fonction principale pour simuler la pièce de monnaie 10 000 fois. Dans cette fonction, nous appellerons notre fonction Simulate et notre fonction CountStreak pour suivre la plus longue séquence de têtes à travers tous les essais. [[Voir la vidéo pour révéler cet extrait de texte ou de code]] 5. Mettez tout cela ensemble, voici le code complet de votre simulation de flip de pièce: [[voir la vidéo pour révéler cet extrait de texte ou de code]] Une optimisation facultative tandis que le code ci-dessus fonctionne bien pour nos besoins, il y a une place à l'amélioration. Au lieu de créer une liste entière pour suivre les flips, nous pouvons calculer la séquence au fur et à mesure que nous allons gagner du temps et de l'espace: [[voir la vidéo pour révéler cet extrait de texte ou de code]] avec cette implémentation simple mais efficace à Python, vous pouvez désormais simuler un retournement de monnaie, calculer des séquences de têtes et déterminer la séquence la plus longue sur d'innombrables essais. Ces concepts fondamentaux des fonctions et des boucles dans la programmation sont cruciaux et peuvent être appliqués à des simulations plus complexes ou à des tâches d'analyse des données à l'avenir. Essayez d'exécuter le code ci-dessus pour voir les résultats par vous-même et n'hésitez pas à expérimenter en modifiant le nombre de flips ou d'essais pour voir comment il affecte les résultats. Codage heureux!
Les informations fournies ne constituent pas des conseils commerciaux. kdj.com n’assume aucune responsabilité pour les investissements effectués sur la base des informations fournies dans cet article. Les crypto-monnaies sont très volatiles et il est fortement recommandé d’investir avec prudence après une recherche approfondie!
Si vous pensez que le contenu utilisé sur ce site Web porte atteinte à vos droits d’auteur, veuillez nous contacter immédiatement (info@kdj.com) et nous le supprimerons dans les plus brefs délais.