市值: $3.6711T 0.93%
成交额(24h): $135.3191B 22.66%
  • 市值: $3.6711T 0.93%
  • 成交额(24h): $135.3191B 22.66%
  • 恐惧与贪婪指数:
  • 市值: $3.6711T 0.93%
加密货币
话题
百科
资讯
加密话题
视频
热门新闻
加密货币
话题
百科
资讯
加密话题
视频
bitcoin
bitcoin

$108183.343957 USD

1.12%

ethereum
ethereum

$3953.318181 USD

2.13%

tether
tether

$1.000758 USD

0.05%

bnb
bnb

$1102.411872 USD

1.73%

xrp
xrp

$2.377410 USD

1.30%

solana
solana

$185.715867 USD

0.05%

usd-coin
usd-coin

$1.000561 USD

0.08%

tron
tron

$0.320859 USD

2.39%

dogecoin
dogecoin

$0.194561 USD

3.07%

cardano
cardano

$0.647327 USD

2.68%

hyperliquid
hyperliquid

$37.310392 USD

1.96%

ethena-usde
ethena-usde

$0.999792 USD

0.04%

chainlink
chainlink

$17.181017 USD

2.56%

stellar
stellar

$0.316938 USD

1.13%

bitcoin-cash
bitcoin-cash

$472.186880 USD

1.35%

加密货币新闻

SwiReasoning:大型语言模型推理模式的新领域

2025/10/19 16:01

探索 SwiReasoning,这是一种新颖的 AI 框架,通过在推理模式之间动态切换、提高准确性和令牌使用来提高大型语言模型的效率。

SwiReasoning:大型语言模型推理模式的新领域

The world of large language models (LLMs) is constantly evolving, and a recent development is making waves: SwiReasoning. This innovative framework, designed by researchers at Georgia Tech and Microsoft, promises to revolutionize how LLMs approach reasoning tasks. By dynamically switching between different reasoning strategies, SwiReasoning aims to boost both accuracy and efficiency.

大型语言模型 (LLM) 的世界在不断发展,最近的一项发展正在掀起波澜:SwiReasoning。这个创新框架由佐治亚理工学院和微软的研究人员设计,有望彻底改变法学硕士处理推理任务的方式。通过在不同的推理策略之间动态切换,SwiReasoning 旨在提高准确性和效率。

Understanding SwiReasoning's Core: Reasoning Modes

理解 SwiReasoning 的核心:推理模式

At the heart of SwiReasoning lies its ability to toggle between two distinct reasoning modes:

SwiReasoning 的核心在于它能够在两种不同的推理模式之间切换:

  • Chain-of-Thought: This mode tackles problems step-by-step, using plain language to break down complex tasks.
  • Latent Reasoning: This mode operates within the model's vector space, performing reasoning without generating explicit text output.

The framework intelligently decides when to switch modes by monitoring the model's uncertainty, measured by the entropy of token probabilities. Low entropy indicates confidence, prompting a shift to explicit mode to solidify the line of thought. Conversely, high entropy signals uncertainty, triggering a return to latent mode to explore alternative solutions.

该框架通过监控模型的不确定性(通过令牌概率的熵来衡量)来智能地决定何时切换模式。低熵表明信心,促使转向显式模式以巩固思路。相反,高熵表示不确定性,触发返回潜在模式以探索替代解决方案。

Preventing Overthinking and Enhancing Efficiency

防止过度思考并提高效率

To prevent models from getting stuck in unproductive thought loops, SwiReasoning incorporates several mechanisms. Asymmetric dwell times ensure that switching to explicit mode happens instantly, while returning to latent mode requires a minimum number of steps. A cap on the number of allowed mode switches further prevents endless internal debate, forcing the model to wrap up its reasoning when it reaches half the limit or to provide an immediate response if it exceeds the maximum.

为了防止模型陷入无效的思维循环,SwiReasoning 结合了多种机制。不对称的停留时间确保立即切换到显式模式,而返回到潜在模式则需要最少的步骤。对允许的模式切换数量的上限进一步防止了无休止的内部争论,迫使模型在达到限制的一半时结束其推理,或者在超过最大值时提供立即响应。

The Impact of SwiReasoning: Performance and Token Efficiency

SwiReasoning 的影响:性能和代币效率

Tests on smaller models, such as Qwen3-8B, Qwen3-1.7B, and Deepseek R1, have shown promising results. SwiReasoning improved accuracy by up to 2.8 percent on math tasks and 2 percent on science tasks, particularly on the most challenging problems. Under strict token constraints, the framework significantly enhanced token efficiency, achieving improvements of 56 to 79 percent, and in some cases by as much as 6.8 times compared to standard chain-of-thought.

对 Qwen3-8B、Qwen3-1.7B 和 Deepseek R1 等较小模型的测试显示出有希望的结果。 SwiReasoning 将数学任务的准确性提高了 2.8%,将科学任务的准确性提高了 2%,特别是在最具挑战性的问题上。在严格的代币约束下,该框架显着提高了代币效率,与标准思想链相比,实现了 56% 至 79% 的改进,在某些情况下高达 6.8 倍。

Real-World Implications and Accessibility

现实世界的影响和可及性

One of the most appealing aspects of SwiReasoning is that it requires no extra training and can be easily integrated as a replacement for standard generation functions. The implementation is available on GitHub, making it accessible to researchers and developers looking to enhance the reasoning capabilities of their LLMs.

SwiReasoning 最吸引人的方面之一是它不需要额外的培训,并且可以轻松集成作为标准生成函数的替代品。该实现可在 GitHub 上获取,让希望增强法学硕士推理能力的研究人员和开发人员可以使用它。

A Glimpse into the Future

未来一瞥

SwiReasoning represents a significant step forward in the quest to improve the reasoning abilities of large language models. Its dynamic approach to reasoning, combined with its focus on efficiency, holds great promise for a wide range of applications. As LLMs continue to evolve, frameworks like SwiReasoning will undoubtedly play a crucial role in shaping their future.

SwiReasoning 代表了在提高大型语言模型推理能力方面向前迈出的重要一步。其动态推理方法加上对效率的关注,为广泛的应用带来了巨大的希望。随着法学硕士的不断发展,像 SwiReasoning 这样的框架无疑将在塑造其未来方面发挥至关重要的作用。

So, there you have it! SwiReasoning: making LLMs a little bit smarter, one token at a time. Who knows? Maybe one day, they'll be writing their own blog posts. But until then, we'll keep you in the loop!

所以,你就有了! SwiReasoning:让法学硕士变得更聪明一点,一次一个令牌。谁知道?也许有一天,他们会写自己的博客文章。但在那之前,我们会让您随时了解最新情况!

原文来源:the-decoder

免责声明:info@kdj.com

所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!

如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。

2025年10月20日 发表的其他文章