![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
大型语言模型 (LLM) 已成为现代人工智能应用程序不可或缺的一部分,为聊天机器人和代码生成器等工具提供支持。然而,对这些模型的日益依赖揭示了推理过程中严重的低效率问题。 FlashAttention 和 SparseAttention 等注意力机制经常会遇到不同的工作负载、动态输入模式和 GPU 资源限制。这些挑战,再加上高延迟和内存瓶颈,强调需要更高效、更灵活的解决方案来支持可扩展和响应灵敏的 LLM 推理。
Large Language Models (LLMs) have become ubiquitous in modern AI applications, powering tools ranging from chatbots to code generators. However, increased reliance on LLMs has highlighted critical inefficiencies in inference processes. Attention mechanisms, such as FlashAttention and SparseAttention, often encounter challenges with diverse workloads, dynamic input patterns, and GPU resource limitations. These hurdles, coupled with high latency and memory bottlenecks, underscore the need for a more efficient and flexible solution to support scalable and responsive LLM inference.
大型语言模型 (LLM) 在现代人工智能应用中已变得无处不在,为从聊天机器人到代码生成器等各种工具提供支持。然而,对法学硕士的日益依赖凸显了推理过程中严重的低效率问题。 FlashAttention 和 SparseAttention 等注意力机制经常遇到不同工作负载、动态输入模式和 GPU 资源限制的挑战。这些障碍,再加上高延迟和内存瓶颈,强调需要更高效、更灵活的解决方案来支持可扩展和响应灵敏的 LLM 推理。
To address these challenges, researchers from the University of Washington, NVIDIA, Perplexity AI, and Carnegie Mellon University have developed FlashInfer, an AI library and kernel generator tailored for LLM inference. FlashInfer provides high-performance GPU kernel implementations for various attention mechanisms, including FlashAttention, SparseAttention, PageAttention, and sampling. Its design prioritizes flexibility and efficiency, addressing key challenges in LLM inference serving.
为了应对这些挑战,来自华盛顿大学、NVIDIA、Perplexity AI 和卡内基梅隆大学的研究人员开发了 FlashInfer,这是一个专为 LLM 推理量身定制的 AI 库和内核生成器。 FlashInfer 为各种注意力机制提供高性能 GPU 内核实现,包括 FlashAttention、SparseAttention、PageAttention 和采样。其设计优先考虑灵活性和效率,解决法学硕士推理服务的关键挑战。
FlashInfer incorporates a block-sparse format to handle heterogeneous KV-cache storage efficiently and employs dynamic, load-balanced scheduling to optimize GPU usage. With integration into popular LLM serving frameworks like SGLang, vLLM, and MLC-Engine, FlashInfer offers a practical and adaptable approach to improving inference performance.
FlashInfer 采用块稀疏格式来有效处理异构 KV 缓存存储,并采用动态、负载平衡调度来优化 GPU 使用。通过集成到 SGLang、vLLM 和 MLC-Engine 等流行的 LLM 服务框架中,FlashInfer 提供了一种实用且适应性强的方法来提高推理性能。
Technical Features and Benefits
技术特点和优点
FlashInfer introduces several technical innovations:
FlashInfer引入了多项技术创新:
Performance Insights
绩效洞察
FlashInfer demonstrates notable performance improvements across various benchmarks:
FlashInfer 在各种基准测试中展示了显着的性能改进:
FlashInfer also excels in parallel decoding tasks, with composable formats enabling significant reductions in Time-To-First-Token (TTFT). For instance, tests on the Llama 3.1 model (70B parameters) show up to a 22.86% decrease in TTFT under specific configurations.
FlashInfer 在并行解码任务方面也表现出色,其可组合格式可显着缩短首次令牌时间 (TTFT)。例如,对 Llama 3.1 模型(70B 参数)的测试显示,在特定配置下 TTFT 降低了 22.86%。
Conclusion
结论
FlashInfer offers a practical and efficient solution to the challenges of LLM inference, providing significant improvements in performance and resource utilization. Its flexible design and integration capabilities make it a valuable tool for advancing LLM-serving frameworks. By addressing key inefficiencies and offering robust technical solutions, FlashInfer paves the way for more accessible and scalable AI applications. As an open-source project, it invites further collaboration and innovation from the research community, ensuring continuous improvement and adaptation to emerging challenges in AI infrastructure.
FlashInfer 为 LLM 推理的挑战提供了实用且高效的解决方案,显着提高了性能和资源利用率。其灵活的设计和集成功能使其成为推进 LLM 服务框架的宝贵工具。通过解决关键的低效率问题并提供强大的技术解决方案,FlashInfer 为更易于访问和扩展的人工智能应用程序铺平了道路。作为一个开源项目,它邀请研究界进一步合作和创新,确保持续改进和适应人工智能基础设施中出现的挑战。
Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.
查看 Paper 和 GitHub 页面。这项研究的所有功劳都归功于该项目的研究人员。另外,不要忘记在 Twitter 上关注我们并加入我们的 Telegram 频道和 LinkedIn 群组。不要忘记加入我们 60k+ ML SubReddit。
🚨 FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence – Join this webinar to gain actionable insights into boosting LLM model performance and accuracy while safeguarding data privacy.
🚨 即将举行的免费 AI 网络研讨会(2025 年 1 月 15 日):通过综合数据和评估智能提高 LLM 准确性 - 加入此网络研讨会,获得可操作的见解,以提高 LLM 模型的性能和准确性,同时保护数据隐私。
免责声明:info@kdj.com
所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!
如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。
-
-
- 比特币,税收和基金经理:在纽约市导航加密迷宫
- 2025-07-06 12:50:14
- 探索比特币税收和基金经理观点的复杂性。政府有权获得税收比特币吗?投资时基金经理面临哪些障碍?
-
-
- 债务上限,特朗普和比特币的吸引力:纽约财政政策的一分钟
- 2025-07-06 12:30:13
- 特朗普的“一个大型账单”及其对债务上限的影响,以及为什么比特币现在看起来有点不错。
-
- 阻止预售:瞄准在拥挤的加密货币空间中获得高回报
- 2025-07-06 14:10:13
- 探索Blockdag的预售,潜在的回报,以及它如何与其他趋势加密货币相抵触,以寻求高ROI。
-
- 比特币,以太坊和加密货币收益:纽约市加密货币场景中有什么热点?
- 2025-07-06 13:10:15
- 比特币具有强大的,以太坊的攀爬和替代币 - 发现了纽约市的见解,发现最新的加密货币收益和趋势,塑造了市场。
-
- Zerion:实时投资组合跟踪革命性
- 2025-07-06 13:10:15
- 发现Zerion如何利用实时数据来提供多个网络跨多个网络的无与伦比的DEFI和NFT投资组合跟踪。
-
- 比特币转移,市场下降和猜测:解码加密鲸的动作
- 2025-07-06 12:35:13
- 最近,从休眠钱包中转移的大型比特币转移引起了市场下降和强烈的猜测。这些运动对BTC的未来意味着什么?
-
- 德克萨斯州参议院竞赛,帕萨迪纳委员会和选举:一周的审查
- 2025-07-06 12:55:13
- 从美国参议院的竞赛到戏剧性的帕萨迪纳市议会决定,审视得克萨斯州的政治格局,强调了关键事件和见解。