![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
the price impact of large trades. Back runners place their orders after the victim’s trade, but still within the same block, to benefit from the price movement triggered by the victim’s trade.
Back-running is a strategy that is often used in conjunction with front-running. It involves observing a large trade in the mempool and placing an order in the same direction, but later in the block. This strategy benefits from the price movement caused by the victim’s trade, but without the risk of being front-run.
Back-running is typically less profitable than front-running, as the price impact of a trade diminishes over time. However, it is still a viable strategy, especially when the victim’s trade is particularly large.
Sandwich Attack
A sandwich attack is a type of MEV strategy that involves placing two trades around a victim’s trade to profit from the price impact. The searcher first identifies a victim’s trade in the mempool and places a buy or sell order before it, and then places another order in the opposite direction after the victim’s trade.
Sandwich attacks are a more advanced and profitable form of MEV strategy. They involve identifying a large trade in the mempool and placing two orders around it, one before and one after. The goal is to capture the price impact of the victim’s trade on both sides.
In this example, the searcher observed a pending sell trade for 100 SOL, which is likely to drive down the price of SOL. To capitalize on this, the searcher placed a buy trade for 50 SOL before the victim's trade, and then a sell trade for 50 SOL after the victim's trade. As a result, the searcher was able to buy at a lower price and sell at a higher price, making a profit of 0.0002 SOL (about $0.04) per sandwich transaction.
Solana MEV Data
Below is a collection of relevant, quantifiable, and contextual data to illustrate the current scope and impact of MEV in Solana.
Jito Bundles
Jito bundles are the primary method for seekers to ensure profitable transaction ordering. However, Jito data does not cover the full spectrum of MEV activity; in particular, it does not capture seeker profits or activity through alternative mempools. In addition, many applications use Jito for non-MEV purposes, such as bypassing priority fees to ensure timely inclusion of transactions.
Jito has processed more than 3 billion transaction bundles over the past year, generating a total of 3.75 million SOL in tips. This activity has shown a clear upward trend, from a low of 781 SOL in tips on January 11, 2024, to 60,801 SOL on November 19.
Jito Arbitrage Detection
Jito’s arbitrage detection algorithm analyzes all Solana transactions, including those outside of the Jito bundle, and has identified more than 90.44 million successful arbitrage trades over the past year. The average profit per arbitrage was $1.58, while the single most profitable arbitrage trade generated $3.7 million in gains, and these arbitrage trades generated a total of $142.8 million in profits.
DeezNode Sandwich Transactions
DeezNode runs a sandwich trading bot on an address starting with vpeNAL. Jito's internal analysis shows that almost half of the sandwich attacks against Solana can be attributed to this program. During a 30-day period (December 7 to January 5), the program performed 1.55 million sandwich transactions, making a profit of 65,880 SOL (about $13.43 million), with an average profit of 0.0425 SOL (about $8.67) per sandwich transaction. On an annual basis, the program will generate a profit of more than 801,500 SOL per year.
MEV Mitigation Mechanisms
Finally, let’s explore some strategies and mechanisms that are being considered to reduce or eliminate harmful forms of MEV.
Whitelisting
Whitelisting is a common approach to combating bad actors, especially those engaging in harmful MEV extraction practices. This approach involves identifying and whitelisting a set of trusted validators or transactions, while blocking or delaying transactions from other parties.
However, whitelisting can introduce several problems. Firstly, it may lead to a semi-permissioned and censored environment, which goes against the decentralized philosophy of the blockchain industry. Secondly, whitelisting can delay transaction processing, affecting the user experience, especially during periods of high network activity.
Multiple Concurrent Leaders (MCL)
The Multiple Concurrent Leaders (MCL) system offers a promising long-term solution to the pernicious MEV problem by allowing users to choose between leaders without incurring delays. If leader A acts maliciously, users can redirect their transactions to honest leader B.
However,
免责声明:info@kdj.com
所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!
如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。
-
- 导航加密市场:比特币,交易者体验并避免噪音
- 2025-08-02 00:05:14
- 解码加密市场:比特币的影响力,交易者见解以及如何避免社交媒体陷阱以进行智能投资。
-
- 深度代理,AI任务管理和进化AI:一个新时代?
- 2025-08-02 00:04:55
- 潜入深层代理商的世界,并发现他们如何使用Claude Code和Manus等工具彻底改变AI任务管理。
-
- SPX6900,Blockdag和矿工销售:加密趋势的纽约分钟
- 2025-08-01 22:00:25
- SPX6900面临潜在的更正,Filecoin等待突破,而BlockDag的创新方法驱动了矿工的销售。
-
-
- Solana ETF动量建立:Sol会加入机构党吗?
- 2025-08-01 21:55:52
- 随着Tradfi巨头排队,Solana ETF可以解锁SOL的大量资本流入。这是Sol机构时代的开始吗?
-
-
- XRP,比特币和100万美元的梦想:加密货币现实检查
- 2025-08-01 21:51:44
- 1,000美元的XRP是否像100万美元的比特币一样疯狂?我们深入研究辩论,市值和时间表。
-
- 比特币,策略和利润:2025年骑加密波
- 2025-08-01 21:46:48
- 探索策略的比特币赌注如何导致100亿美元的利润以及对加密战略的意义。在此分析中深入研究趋势,风险和见解。
-