![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
人工智能不再仅仅影响数字融资领域,而是积极地重塑了如何分析加密货币市场的基础
Artificial intelligence is quickly moving beyond mere influence in the digital finance domain—it's spearheading a revolution in the very fabric of how cryptocurrency markets are analyzed, predicted, and navigated.
人工智能正在迅速超越数字融资领域的影响力,这是在对加密货币市场的分析,预测和导航方式的结构上的革命。
From high-frequency autonomous trading bots to neural networks parsing blockchain activity in real time, AI has entered its most impactful era in crypto strategy. And Bitcoin—the flagship cryptocurrency defined by volatility and speculation—is at the forefront of this revolution.
从高频自动交易机器人到实时解析区块链活动的神经网络,AI在加密战略中进入了其最具影响力的时代。比特币(由波动性和投机所定义的旗舰加密货币)位于这场革命的最前沿。
Traditional financial models struggle to anticipate Bitcoin's wild swings, which are influenced as much by macroeconomics as by social sentiment and market psychology. But deep learning offers a unique edge.
传统的财务模型难以预见比特币的野外挥杆,这受宏观经济学和社会情感和市场心理学的影响。但是深度学习提供了独特的优势。
Advanced neural networks, particularly Long Short-Term Memory (LSTM) models, are now widely used in Bitcoin forecasting. These time-series models excel at understanding data dependencies across days or weeks—making them ideal for a volatile asset like BTC.
高级神经网络,特别是长期记忆(LSTM)模型,现在已广泛用于比特币预测中。这些时间序列模型在几天或几周内了解数据依赖性方面表现出色,这使它们非常适合像BTC这样的挥发性资产。
A 2024 study in Forecasting introduced a hybrid deep learning model, merging LSTM with attention layers and gradient-sensitive optimization. It achieved a 99.84% accuracy rate in backtesting, outperforming classic models like ARIMA and even earlier neural architectures.
2024年的预测研究引入了混合深度学习模型,将LSTM与注意层和梯度敏感的优化合并。它在进行回测的精度达到了99.84%的精度,胜过Arima甚至更早的神经体系结构的经典模型。
“Deep learning has made Bitcoin price analysis not just more accurate, but meaningfully adaptive,” says Dr. Rohan Sen, a machine learning researcher at MIT’s AI Lab. “These systems don’t just react—they learn patterns embedded in chaos.”
麻省理工学院AI实验室的机器学习研究人员Rohan Sen博士说:“深度学习使比特币价格分析不仅更准确,而且具有有意义的适应性。” “这些系统不仅反应,还学习嵌入混乱的模式。”
Natural Language Processing (NLP) has found a pertinent use case in crypto sentiment analysis. Twitter, Reddit, and Telegram are hotbeds of investor emotion—and real-time analysis of this chatter helps models correlate public mood with price fluctuations.
自然语言处理(NLP)在加密情绪分析中发现了一个相关的用例。 Twitter,Reddit和Telegram是投资者情感的温床,对此聊天的实时分析有助于模型将公众情绪与价格波动相关联。
A 2023 arXiv paper combined BERT-based sentiment analysis with a GRU price forecast model, showing a mean absolute percentage error of 3.6%. It revealed that integrating emotion detection with price models consistently improves predictive output.
2023年ARXIV纸将基于BERT的情感分析与GRU价格预测模型相结合,显示了平均绝对百分比误差为3.6%。它表明,将情绪检测与价格模型相结合会始终提高预测能力。
Today, institutional trading desks and hedge funds increasingly subscribe to NLP-driven dashboards that scan millions of social signals for sentiment shifts, alerting teams to emerging bullish or bearish momentum before price charts reflect the change.
如今,机构交易台和对冲基金越来越多地赞成NLP驱动的仪表板,这些仪表板扫描了数百万个社会信号以进行情感转变,提醒团队在价格表反映变化之前提醒团队出现看涨或看跌势头。
Bitcoin's market history is littered with flash crashes and coordinated manipulation. Unsupervised AI models—like autoencoders and clustering algorithms—have become powerful tools for anomaly detection, quietly running in the background to spot unusual behavior.
比特币的市场历史上有闪光崩溃和协调的操纵。无监督的AI模型(例如自动编码器和聚类算法)已成为异常检测的强大工具,在后台悄悄地运行以发现异常行为。
These tools analyze real-time feeds of trading data, comparing them with historical baselines. When unexpected trading volume, price divergence, or order book manipulation appears, they alert human traders or trigger automatic hedging protocols.
这些工具分析了交易数据的实时提要,并将其与历史基线进行比较。出现意外交易量,价格差异或订单书籍操纵时,他们会提醒人类交易者或触发自动对冲协议。
“It’s like cybersecurity for the market,” says Mei-Ling Chan, CTO of a crypto quant firm in Hong Kong. “AI doesn’t sleep, and in this business, milliseconds matter.”
“这就像市场的网络安全,”香港加密货币公司CTO的Mei-Ling Chan说。 “人工智能不睡觉,在这项业务中,毫秒很重要。”
One of Bitcoin's most overlooked advantages is its transparency. On-chain data—wallet movements, miner activity, transaction clusters—offers a rare trove of clean, timestamped information that is ideal for machine learning.
比特币最被忽视的优势之一是其透明度。链上数据(毛衣运动,矿工活动,交易群)为机器学习的理想选择提供了罕见的清洁,时间戳信息。
Models are now being trained on active address spikes, hash rate changes, and exchange inflow patterns to build predictive frameworks that don't just analyze price, but the very behavioral underpinnings of the network.
现在,正在对主动地址尖峰,哈希速率变化和交换流入模式进行培训,以建立不仅分析价格的预测框架,而是网络的行为基础。
For example, reinforcement learning algorithms are being used to react to miner sell-offs, identifying potential supply pressure before it hits markets. Meanwhile, unsupervised AI tracks whale wallet behaviors to anticipate large-volume liquidation or accumulation trends.
例如,增强学习算法被用来对矿工抛售做出反应,在销售市场之前识别潜在的供应压力。同时,无监督的AI跟踪鲸鱼钱包行为,以预测大量清算或累积趋势。
No longer are trading bots executing preset logic trees. Today's AI-powered bots are adaptive, reactive, and, in some cases, self-optimizing.
不再交易机器人执行预设逻辑树。今天的AI驱动机器人具有自适应,反应性,在某些情况下是自我优化的。
They can shift strategies between trend-following, mean reversion, or momentum-based setups depending on market conditions, which are evaluated by live-streamed technical, social, and blockchain data. Some bots use digital twin simulations to run mock trades in parallel with the real market, fine-tuning risk parameters and emerging arbitrage opportunities in real time.
他们可以根据市场条件来改变趋势范围,平均恢复或基于动量的设置之间的策略,这些设置由现场直播的技术,社交和区块链数据评估。一些机器人使用数字双胞胎模拟与真实市场,微调风险参数以及新兴套利机会实时进行模拟交易。
These bots are deployed not just by high-frequency traders but also by retail investors using smart platforms that offer plug-and-play modules for common technical indicators, technical analysis patterns, or emerging macroeconomic events.
这些机器人不仅是由高频交易者部署的,而且还通过散户投资者使用智能平台,这些平台为通用技术指标,技术分析模式或新兴的宏观经济事件提供插件模块。
Despite the strengths that AI offers in crypto markets, there are also red flags to consider.
尽管AI在加密货币市场中提供了优势,但仍有危险信号需要考虑。
Overfitting, where models become too tailored to past conditions, remains a key vulnerability—especially in markets where legal threats, hacks, or tweets can flip the script.
过于拟合的模型过于量身定制过去的条件,仍然是一个关键的脆弱性,尤其是在法律威胁,黑客或推文可以翻转脚本的市场中。
Even more concerning is the potential for coordinated bot activity to interfere with market integrity. This could involve large-scale trading volume generation, price manipulation, or even attempts to swarm social media platforms and shift sentiment.
更令人担忧的是,协调的机器人活动可能会干扰市场完整性。这可能涉及大规模的交易量产生,价格操纵,甚至试图群社交媒体平台和转变情绪。
In response, some exchanges are publishing audit reports of their internal trading algorithms, while others have begun forming crypto-focused AI ethics committees. Transparency and model interpretability are becoming critical as crypto-AI models begin influencing larger institutional flows.
作为回应,一些交易所正在发布有关其内部交易算法的审计报告,而另一些交易所开始成立以加密为重点的AI伦理委员会。透明度和模型的可解释性变得至关重要,因为加密AI模型开始影响较大的机构流。
Recent data from Glassnode shows that wallets holding 1,000–10,000 BTC—commonly known as whales—rose to 2,014 in April 2025, up from 1,944 in March
GlassNode的最新数据表明,持有1,000–10,000 BTC的钱包(通常称为鲸鱼)在2025年4月的2,014个钱包,比3月的1,944
免责声明:info@kdj.com
所提供的信息并非交易建议。根据本文提供的信息进行的任何投资,kdj.com不承担任何责任。加密货币具有高波动性,强烈建议您深入研究后,谨慎投资!
如您认为本网站上使用的内容侵犯了您的版权,请立即联系我们(info@kdj.com),我们将及时删除。
-
- 美国造币厂将于明年年初停止赚钱
- 2025-05-23 00:30:13
- 美国财政部表示,在唐纳德·特朗普总统要求该机构停止生产硬币后,明年年初将逐步淘汰新的便士。
-
- LCX列出了Kaspa(什么)
- 2025-05-23 00:30:13
- 我们很高兴宣布$ kas的上市。从2025年5月22日(星期四)下午12点开始。 LCX Exchange将支持$ kas。
-
-
-
-
-
- Pectra升级将ETH提升到3,000美元
- 2025-05-23 00:15:15
- 以太坊(ETH)一直在快速移动,pectra升级为2500美元的增长速度增长,并越来越接近3,000美元。
-
-
- 特朗普在他的加密货币硬币中为前200名投资者举办黑领带晚餐
- 2025-05-23 00:10:13
- 特朗普私人弗吉尼亚高尔夫俱乐部举行的晚会举行了一场高风险大赛,投资者将数百万美元送入特朗普的模因硬币,特朗普$