![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
Articles d’actualité sur les crypto-monnaies
METAGENE-1: A Metagenomic Foundation Model for Biosurveillance and Pandemic Preparedness
Jan 07, 2025 at 10:51 am
With emerging pandemics posing persistent threats to global health, the need for advanced biosurveillance and pathogen detection systems is becoming increasingly evident. Traditional genomic analysis methods, while effective in isolated cases, often encounter challenges in addressing the complexities of large-scale health monitoring. A significant difficulty lies in identifying and understanding the genomic diversity in environments such as wastewater, which contains a rich mix of microbial and viral DNA and RNA. In this context, the rapid advancements in biological research are highlighting the importance of scalable, accurate, and interpretable models to analyze vast amounts of metagenomic data, aiding in the prediction and mitigation of health crises.
Now, a team of researchers from the University of Southern California, Prime Intellect, and the Nucleic Acid Observatory have introduced METAGENE-1, a metagenomic foundation model. This 7-billion-parameter autoregressive transformer model is specifically designed to analyze metagenomic sequences. METAGENE-1 is trained on a dataset comprising over 1.5 trillion DNA and RNA base pairs derived from human wastewater samples, utilizing next-generation sequencing technologies and a tailored byte-pair encoding (BPE) tokenization strategy to capture the intricate genomic diversity present in these datasets. The model is open-sourced, encouraging collaboration and further advancements in the field.
Technical Highlights and BenefitsMETAGENE-1’s architecture draws on modern transformer models, including GPT and Llama families. This decoder-only transformer uses a causal language modeling objective to predict the next token in a sequence based on preceding tokens. Its key features include:
A decoder-only transformer architecture with 7 billion parameters.
Trained on a vast dataset of over 1.5 trillion DNA and RNA base pairs from human wastewater samples.
Employs a BPE tokenization strategy tailored to metagenomic sequences.
These features enable METAGENE-1 to generate high-quality sequence embeddings and adapt to specific tasks, enhancing its utility in the genomic and public health domains.
Results and InsightsThe capabilities of METAGENE-1 were assessed using multiple benchmarks, where it demonstrated notable performance. In a pathogen detection benchmark based on human wastewater samples, the model achieved an average Matthews correlation coefficient (MCC) of 92.96, significantly outperforming other models. Additionally, METAGENE-1 showed strong results in anomaly detection tasks, effectively distinguishing metagenomic sequences from other genomic data sources.
In embedding-based genomic analyses, METAGENE-1 excelled on the Gene-MTEB benchmark, achieving a global average score of 0.59. This performance underscores its adaptability in both zero-shot and fine-tuning scenarios, reinforcing its value in handling complex and diverse metagenomic data.
ConclusionMETAGENE-1 represents a thoughtful integration of artificial intelligence and metagenomics. By leveraging transformer architectures, the model offers practical solutions for biosurveillance and pandemic preparedness. Its open-source release invites researchers to collaborate and innovate, advancing the field of genomic science. As challenges related to emerging pathogens and global pandemics continue, METAGENE-1 demonstrates how technology can play a crucial role in addressing public health concerns effectively and responsibly.
Check out the Paper, Website, GitHub Page, and Model on Hugging Face. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.
FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence
Clause de non-responsabilité:info@kdj.com
Les informations fournies ne constituent pas des conseils commerciaux. kdj.com n’assume aucune responsabilité pour les investissements effectués sur la base des informations fournies dans cet article. Les crypto-monnaies sont très volatiles et il est fortement recommandé d’investir avec prudence après une recherche approfondie!
Si vous pensez que le contenu utilisé sur ce site Web porte atteinte à vos droits d’auteur, veuillez nous contacter immédiatement (info@kdj.com) et nous le supprimerons dans les plus brefs délais.
-
- Hong Kong vient de passer le projet de loi sur la crypto-monnaie. Voici ce que les entrepreneurs devraient faire
- Jun 14, 2025 at 05:45 pm
- Le 21 mai, la seconde, le Hong Kong Legislative Council a adopté le projet de loi sur l'offre de pièces lors de la troisième lecture, les commentaires du groupe de trading crypto de l'à côté sont devenus complètement fous
-
- Que se passe-t-il lorsqu'une altcoin construit des ponts transversales tandis que d'autres poursuivent des pics de prix à court terme?
- Jun 14, 2025 at 05:45 pm
- Solana attire l'attention renouvelée après avoir rebondi à 150 $ et touché des sommets intrajournaliers de 161,8 $, soutenus par une impressionnante augmentation de volume de 97%
-
- La liste ultime de cryptos de moins de 1 $ qui sera 10x en 2025
- Jun 14, 2025 at 05:40 pm
- Par: Alex Rivera
-
- Prédiction de prix de Dogecoin (DOGE): les dernières prévisions utilisent des extensions de Fibonacci pour montrer des cibles optimistes possibles avant la saison attendue de l'Altcoin
- Jun 14, 2025 at 05:40 pm
- Les dernières prévisions pour Dogecoin (DOGE) utilisent des extensions de Fibonacci pour montrer d'éventuels objectifs de prix haussiers avant la saison altcoin attendue.
-
- Ethereum Price a commencé une nouvelle augmentation au-dessus de la zone de 2 650 $. ETH Eyes plus de gains au-dessus de 2 800 $
- Jun 14, 2025 at 05:35 pm
- Ethereum Price a commencé une nouvelle augmentation après avoir trouvé un soutien près du niveau de 2 500 $, battant Bitcoin. ETH consolide maintenant et les yeux plus de gains au-dessus de la résistance de 2800 $.
-
-
-
-
- Michael Saylor de la stratégie reprend les craintes d'un marché de la cryptographie, prédit que Bitcoin se rassemblera à 1 million de dollars
- Jun 14, 2025 at 05:25 pm
- Michael Saylor de Strategy a repoussé les craintes qu'un hiver du marché de la crypto ne revienne, ce qui suggère que l'adoption accrue de Bitcoin et l'offre quotidienne limitée le verront à 1 million de dollars.